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Using re
ection to build e�cient and certi�ed decision proceduresSamuel BoutinSamuel.Boutin@inria.frJanuary 9, 1997AbstractIn this paper we explain how computational re
ection can help build e�cient certi�ed decisionprocedure in reduction systems. We have developped a decision procedure on abelian rings in theCoq system but the approach we describe applies to all reduction systems that allow the de�nitionof concrete types (or datatypes). We show that computational re
ection is more e�cient thanan LCF-like approach to implement decision procedures in a reduction system. We discuss theconcept of total re
ection, which we have investigated in Coq using two facts: the extractionprocess available in Coq and the fact that the implementation language of the Coq system can beconsidered as a sublanguage of Coq. Total re
ection is not yet implemented in Coq but we cantest its performance as the extraction process is e�ective. Both re
ection and total re
ection areconservative extensions of the reduction system in which they are used. We also discuss performanceand related approaches. In the paper,we assume basic knowledges of ML and proof-checkers.1 IntroductionAim of the paperIn this paper we show how to build e�cient, certi�ed decision procedures in a broad range of applica-tions. Computer algebra systems attempt to answer the problem of e�cient symbolic computation butignore the goal of reliability. The same aim is followed by systems allowing the checking of tautologiesusing a broad range of techniques among which we �nd binary decision diagrams. On the other hand,a large number of systems try to prove the reliability of programs and mathematical results but seemto be too weak to be used for real world examples. This paper addresses the question of how we could�ll the gap between these communities with a technique that yield both e�cency and high level ofreliability. We show how computational re
ection in reduction systems seems to be a valuable answerto the problem of writing e�cient and reliable decision procedures.As a concrete application, we have implemented a certi�ed decision procedure on the �rst order theoryof abelian rings in the Coq proof developpement system, but no previous knowledge of Coq is requiredto read this paper. The decision on the theory of abelian rings is at the same time a simple andpowerful test. It is not far from decision on boolean rings allowing the checking of tautologies andit is implemented in computer algebra systems. It is also a non-trivial example as it addresses thequestion of dealing with associative commutative theories.Systems like HOL or PVS already o�er powerful means to de�ne decision procedures. ConcerningHOL for instance, we think that following our approach, it is possible to build decision procedures atleast an order of magnitude faster with the same level of reliability and in a quite easy manner.OverviewIn the second section we recall basic notions concerning theorem-provers and explain basic means ofcomparison between a wide range of provers. The third section addresses the usual mechanism of goal-directed theorem proving using tactics and tacticals and explains why this approach is problematic1
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in systems which keep proof-objects. The fourth section addresses the mechanism of computationalre
ection in the Coq theorem prover but no particular knowledge about Coq is needed to read it. The�fth section addresses some hints about what we call total (or complete) re
ection and the reliabilityproblems it raises. The sixth section addresses the performance of the method and the seventh sectiondiscusses numerous related approaches concerning computational re
ection.2 Reduction systems and fully expansive proversIt seems possible to divide current theorem-proving systems into two broad categories. In the �rstcategory are automatic theorem-provers where a user can just tell the system to prove a new lemmagiven a bunch of already checked lemmas. So in such systems, the user has to guess the intermediatelemmas that the prover possibly needs to solve a problem. In these systems, the user has nearly nomeans to design the proof of the theorem. The point in such systems is the power of the decisionprocedures available in the system and the exact way the proof is gotten is irrelevant. Reliability insuch system amounts to the reliability of all the decision procedures used to perform a proof. In orderto extend dynamically the power of such a system, there ought to exist a mechanism to safely addnew decision procedures. Such a mechanism exists for instance in the Boyer-Moore theorem prover[3] which belongs to the �rst category.In the second category are computer aided proof-checkers, inheriting the LCF approach, where anyobject, proof or decision procedure has to split in a sequence of application of a �nite set of primitiverules. In these systems, proofs can be constructed in a top-down manner by the application of tactics.In this second camp, we can still distinguish fully expansive theorem provers from reduction systems.This distinction concerns merely the implementation style but we believe that in fact it relies on avery di�erent approach to the process of building proofs. We consider that the respective treatmentsof identity merely explain the divergences: there exists indecidable problems in mathematics so, aproof checker needs the user in the process of building a proof. Roughly, Fully Expensive TheoremProvers (FETP), always rely on extensional type theory so that identities managed by the prover canbe undecidable and must be under the control of the user. Reduction systems rely on intensionaltype theory so that identity is decidable (and not under the user control) but weak so that this raisesproblems when dealing with extensional concepts but we do not discuss this topic in the paper.Another way to say this is that, in FETPs, de�nitional identity (how the system identi�es terms) iscomposed of renaming of variables and abreviation and the user proves identities through primitivejudgmental equality which allows derived identities; while in reduction systems, de�nitional equalityis extended with � and �-reduction (the reduction of primitive recursive pattern matching) so that it isdecidable and no judgmental equality is available. If the user wants to prove identities in a reductionsystem, he must use a de�ned identity and for instance it is possible to de�ne an equality in the objectlanguage of Coq which behaves nearly like Leibniz equality.Yet another way to explain this di�erence is to say that all the rewriting steps are explicit in aFETP while there are implicit proof steps in a reduction system (namely � and � reductions). Aside e�ect of this di�erence is that there exists means of computation in reduction systems, similar tousual functional languages while this is not the case in pure FETPs like LCF or HOL. The price forthis is that the critical part of the code of a FETP consists of the implementation of the logic, whilethe critical part of the code of a reduction system must also include the code that implements theextended de�nitional equality.Of course this description is simplistic but it sheds light over the di�erences between modern proversand allows to say in a few words the leitmotiv of the paper: using computational re
ection, we translatetheorem proving into computation and at the same time we translate explicit proof steps into implicitones and this is possible because we use a reduction system: Coq.The following simple examples illustrate what is an explicit proof step and what is an implicit one.Consider the following sequence performed in Coq:2
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============================(plus O O)=OUnnamed_thm < Simpl;Apply refl_equal.Subtree proved!Let's roughly explain what happens in this small sequence. The function plus is de�ned by primitiverecursion on its �rst argument so that (plus O O) computes to O in the de�nitional identity of thesystem. The symbol = stands for a user-de�ned relation which behaves roughly like Leibniz identity.To solve the goal (plus O O)=O, we �rst put it in normal form for de�nitional identity using the tacticSimpl and so we obtain the new goal O = O, but this is just an instance of the re
exivity of the =relation and we can conclude by applying the refl_equal axiom which asserts this re
exivity. Wecan ask for the proof generated by this sequence of tactics by using the Coq command Show Proof;it yields \(refl_equal nat O)". So the important point we show is that the rewrite of (plus O O)into O does not appear in the proof term: it is what we call an implicit proof step or implicitrewriting step or computation (the reduction of a primitive recursive pattern matching).Consider now this other sequence:============================(a,b,c:nat)a=b->b=c->a=cUnnamed_thm < Intros a b c a_eq_b b_eq_c;Rewrite -> a_eq_b;Exact b_eq_c.Subtree proved!Unnamed_thm < Show Proof.Proof: [a,b,c:nat][a_eq_b:a=b][b_eq_c:b=c](eq_ind_r nat b [n:nat]n=c a_eq_b a b_eq_c)Here, the notation (a,b,c:nat)a=b->b=c->a=c means informally: \for all natural numbers a, b, c,a=b implies b=c implies a=c". We directly construct a sequence of tactics (see the following sectionfor more details) which proves this goal. Using Intros a b c a_eq_b b_eq_c, we say that this goalcan be proved if we are able to prove a=c in the context where a, b, c are integers and where weknow that a=b and b=c. This operation is called the discharging of hypotheses and it also gives namesto hypotheses. Here we call a_eq_b the hypothesis a=b for instance. With Rewrite -> a_eq_b, werewrite a to b in the goal so that the new goal is b=c but this is an hypothesis and we conclude withExact b_eq_c. We now ask for the proof term and obtain[a,b,c:nat][a_eq_b:a=b][b_eq_c:b=c](eq_ind_r nat b [n:nat]n=c a_eq_b a b_eq_c)The []-abstractions correspond to discharged hypotheses and the rest of the proof term,(eq_ind_r nat b [n:nat]n=c a_eq_b a b_eq_c) corresponds to the rewrite of hypothesis a_eq_b.This term is an application of Leibniz principle. Without entering into details, just remark thatto perform the rewrite of a into b on the goal a=c, we have to build explicitely the predicate[n:nat]n=c. More generally, the point is that such an explicit rewrite requires to build apredicate of the size of the goal in a reduction system.3 The goal-directed LCF approachFor the sake of completeness we recall the usual way of de�ning decision procedures using an LCFlike approach. We show that this approach does not �t in the case of reduction systems. As thiswas described through the two small examples of the previous section, tactics allow to construct thederivation of a theorem during an interactive session where the user of the system applies a tactic toa goal and then has to solve the subgoals generated by this application. Most of the type checkerssupport an LCF like set of tactics and tacticals; and this tools allow to de�ne decision procedures.Here are the main tacticals available in the Coq system.3
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� Repeat T applies the tactic T on the current goal until T fails.� T1 ; T2 �rst applies T1 then T2 to the subgoals generated by the application of T1.� T1 Orelse T2 applies T1 and if the application of T1 fails, it applies T2.� Try T tries T and does nothing if T fails.� T ; [T1; :::::;Tn] applies T and then Ti to the i-th subgoal generated by T .� expressive power of ML pattern matchingAs an example of how this work, let's look at the problem of deciding identity on the �rst ordertheory of monoids. Suppose for instance that the type A 1 in Coq supports a monoid structure. Thismeans that there exists constants unit_A and mult_A such that the following constants2 are available:assoc_mult_A : (x,y,z:A) (mult_A (mult_A x y) z) = (mult_A x (mult_A y z)).neutral_one_A_left: (x:A) (mult_A one_A x) = x.neutral_one_A_right: (x:A) (mult_A x one_A) = x.\(_:A)" means \for all _ in A". Now the problem is how to de�ne a decision procedure that decideidentities that are deducible from assoc_mult_A, neutral_one_A_left, and neutral_one_A_rightonly. To perform this, a simple solution is to put the two members of the identity in canonical formw.r.t the monoid structure; for instance a possible canonical form is the elimination of unnecessaryoccurences of one_A, and systematic association to the right. For more details about canonical formsw.r.t �rst order theories, refer to [13]. We can write a naive decision procedure on this theory usingCoq, call it Monoid_dec exactly as it would be possible in HOL:Repeat ((Rewrite -> neutral_one_A_left)Orelse(Rewrite -> neutral_one_A_right)Orelse(Rewrite -> neutral_one_A_left));Auto.The tactic Rewrite ->t, where t is a universally quanti�ed identity rewrites all the occurences of theleft member of t that the system is able to match into the correctly instanciated right member of t.Suppose now that you want to check an identity on the theory of monoids. Then apply the tacticabove. Obviously, both left and right members will be put in canonical form as this tactic eliminatesthe three kind of \monoid redexes", and then the Auto ought to conclude if the goal is now an instanceof the re
exivity of equality.This seems a very simple way of de�ning decision procedures! In fact, in the context of a reductionsystem, it is also very ine�cient. The size of proof terms in a reduction system, using this approach canbe estimated: given a goal F , the size of the proof of F using decision procedure D is approximativelysize(F ) � n(D;F ) where size(F ) is the size of the formula F and n(D;F ) is the number of rewritesto prove F using D. This is directly related to our example about explicit proof steps at the end ofsection 2. This can be improved if, by some means, the decision procedure is able to perform localactions on the goal but anyway it remains essentially bad in the treatment of big problems. So thisapproach can be used for middle size problems involving at most a few hundreds of rewrites. In caseof large problem solving we recommend the approach described in the next section.1if you do not like the word type, call it a set2if you do not like the constant, call it an axiom
4
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4 Computational re
ection in CoqFollowing Harrison [8], \computational re
ection principles do not extend the power of the logic,but may make deductions in it more e�cient". We can be more precise here as what we do can besummarized as follows: rather than rewriting tactics as this was described in the previous section,we perform this rewriting with the de�nitional identity of the system. Another way to say this is wetranslate explicit proof steps (rewrites) into implicit ones. To do so, we need what we call metai�cation.We have implemented the decision on the theory of abelian rings using the method described here butfor the sake of simplicity we use the theory of monoids as sample. We discuss the performance of thisapproach in a further section.In the previous section we introduced a type A and a set of constants that �t A with the structure ofmonoid. In this section, we still want to decide identites on the theory of monoids that we call thetarget theory. Our general approach to the building of a re
ection tactical deciding for a �rst ordertheory is as follows (we illustrate the general scheme using the case of monoids):1. de�ne an inductive type [16] the constructors of which are the constants of the target theory.In the case of monoids this corresponds in Coq to the following inductive de�nition:Inductive Set monoid :=r1 : monoid| rmult : monoid -> monoid -> monoid| atom : nat -> monoid.This de�nition is exactly like the de�nition of a concrete types 3 in ML. So r1 and rmult areinductive constructors corresponding to constants one_A and mult_A. The extra constructoratom is used to encode variables corresponding to objects of type A which are neither one_A normult_A and its use will be cleared later on. We call atom, r1 and rmult the signature of thesource theory, and monoid is the source theory.2. de�ne a translation of the source theory into the target theory by primitive recursive patternmatching on the source theory. This is the canonical map from the source theory to thetarget theory. In the case of monoids, this canonical map is the following T_A primitive recursivefunction; the keyword Fixpoint is for Coq something like let rec for ML and the primitivepattern matching begins with keyword Cases and ends with end:Fixpoint T_A[map:assoc_list;x:monoid] : A :=Cases x of(atom q) => (assoc q map)| r1 => one_A| (rmult l r) => (mult_A (T_A map l) (T_A map r))end.The variable map denotes an association list to interpret variables constructed with atom andassoc is the corresponding association function.3. de�ne in the meta-language (or implementation language) the inverse of T_A that we call meta_A.This can be performed by a simple inspection of the abstract syntax. For instance this progam,given the expression (mult_A (f x) y) in the target theory will be able to build the termt� (rmult (atom 0) (atom 1)) and the list l�(0,(f x));(1,y) such that (T_A l t) re-duces (or computes) in an implicit proof step to (mult_A (f x) y). We call this step themetai�cation as we use the meta-language to implement the re
ection from the target theoryinto the source theory.3or datatypes if you are an SML user 5



www.manaraa.com

4. implement in the source theory the decision procedure that puts terms of the target theoryin canonical form. So here we suppose that there exists a canonical form. For instance, thefunction delete_neutral below eliminates the extraoccurences of constructor r1 in a term oftype monoid, think that these functions are written nearly as they would be in ML as we useCoq as a programming language here:Fixpoint del [x:monoid] : monoid :=[x:monoid]Cases x of| (rmult l r1) => l| (rmult r1 l) => l| t => tend.Fixpoint delete_neutral [x:monoid] : monoid :=Cases x of| (rmult l r1) => (delete_neutral l)| (rmult r1 l) => (delete_neutral l)| (rmult l r) => (del (rmult (delete_neutral l) (delete_neutral r)))| t => tend.This function performs in the source theory the same kind of action as tactic Monoid_decde�ned in the previous section. We then build R, a normalising function in the same style asdelete_neutral, which also performs association to the right.5. check the correctness of the normalising function on the source theory. What we mean bychecking the correctness of R is proving the following lemma where \(l:assoc_list)(x:A)"means informally \forall association list l and element x of A".Lemma R_correctness : (l:assoc_list)(x:A) (T_A l (R x)) = (T_A l x).Hence we prove correctness of R with respect to the canonical map T_A.6. de�ne the re
ection tactic, Monoid_refl, using the meta_A function and the R_correctnesslemma. Rather than entering technical details concerning the Coq system, we describe informallyhow the tactic works:Suppose we want to decide M = N on A,the target theory� using the metai�cation function, we generate m, n and the association list l such that(T_A l m) = M and (T_A l n)=N.� then by conversion only, current goal is now (T_A l m) = (T_A l n).� by application of the correctness lemma for the decision procedure R the goal becomes(T_A l (R m)) = (T_A l (R n)).� it is easy to translate this goal to: (R m) = (R n).� by reduction we obtain an instance of the re
exivity of Leibniz equality as the new goal ist = t and we are done.The more di�cult step is to prove the R_correctnes lemma. To prove this lemma, we can usean LCF like tactic which is generally quite simple to write. By doing it we perform a \bootstrap"of the LCF like tactic when building the re
ection tactic. For instance, we build an LCF-like tactic,called Ring_dec, which performs decision on the �rst order theory of abelian rings. Then, we buildthe re
ection tactic Ring_refl, using the process of computational re
ection described above. And6
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in the process of proving the correction of the corresponding normalisation function, we used 73 timesthe tatic Ring_dec. Most of the time, this was on quite complicated identities so that Ring_dec saveda lot of work. The bootstrap of LCF like tactics into re
ected ones is not only a nice concept: it isreally useful in practice.Remarks1. The building of a decision procedure is based on the following remark: most of the time, theprocess of putting an element of a �rst order theory in canonical form can be performed byprimitive recursion on an inductive type that encode the �rst order theory. However, if primitiverecursion is not enough, it is still possible to use a more general well founded induction in Coq;there are no limitations in this direction. Finally, putting a term in canonical form for a rewritingsystem is always performed by induction on the signature in some sense and we can use re
ectionto perform it.2. In the case of monoids, you could take the type \A -> monoid" for constructor atom. However,most of the time, and particularly in the case of abelian rings, we need a complete orderingof atoms so that the use of integer is generally justi�ed. For instance, decision on the �rstorder theory of abelian rings amounts to sorting list and lists of lists so we need to compare theelements of these lists (which are atoms).3. The method we describe here is rather general and the scheme of building a re
ection tacticgiven above is not rigid. The main idea is that we re
ect a theory in the object language into aninductive type in the object language. The metai�cation from the target theory to the sourcetheory is performed in the meta-language but all of our approach is conservative. For example,here is work on progress to re
ect propositions as types in the Coq system in order to checkintuitionistic and classical tautologies; in this context, the canonical map from source theory topropositions as types looks like the following:Fixpoint T_Prop[map:assoc_list;x:prop] : Prop :=Cases x of(atom q) => (assoc q map)| p0 => False| p1 => True| (por l r) =>(T_Prop map l)\/(T_Prop map r)| (pand l r)=>(T_Prop map l)/\(T_Prop map r)| (pnot l) =>~(T_Prop map l)| (pxor l r)=>(T_Prop map l)/\ ~(T_Prop map r)\/ ~(T_Prop map l)/\ (T_Prop map r)| (pimp l r)=>(T_Prop map r) \/ ~(T_Prop map l)end.and the corresponding correctness lemma of a decision function, say R, for tautologies is:Lemma R_is_correct :(x:prop)(l:assoc_list)(T_Prop l x) <-> (T_Prop l (R x)).We hope that this gives the taste of the wide range of application of computational re
ection inCoq. 7
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5 Total re
ectionThis section concerns an important issue arising from our work. The previous approach is very e�cientas compared to LCF-approach4 to build decision procedures , but is still too far from the performanceof computer algebra systems or hand-coded decision procedures in a programming language. We nowdescribe a means to �ll most of the gap. We discuss performance in the next section. When applyinga re
ection tactic, most of the time is used in the normalisation process: if we keep the notations ofthe previous section, the long step is the computation of (R n)=(R m), where we evaluate (R n) and(R m). What we want to do here, is to use a very nice property of the Coq system: its implementationlanguage is almost a sublanguage of the metalanguage. Coq is implemented in Objective Caml [15] adialect of ML; and Coq has an extraction process [17] from the Coq object language to Objective Caml.So we can use this extraction process to translate delete_neutral and R from Coq to Objective Caml.This extraction process is automatic and its correctness is gauranteed. So, using the extraction process,we want to perform the computation of (R m) in the language Objective Caml rather than using thecomputation function of the Coq system. The evaluation of Objective Caml is 500 to 1000 timesfaster than the one of Coq for the following reasons. First Coq is not compiled but interpreted, secondCoq's encoding of concrete types is more sophisticated than ML's because the notion of inductivetype is more general than concrete types. Third Coq performs strong computation (reducing underabstractions) while Objective Caml uses call-by-value.We call total re
ection this process of combining re
ection and extraction. Using total re
ectionmeans that the extraction process becomes critical to correctness of the system. Total re
ection is notimplemented yet but we can trace its e�ciency as program extraction is implemented.6 Application and performancesWe have implemented a decision procedure on abelian rings using an LCF like approach and thenusing re
ection. The algorithms under these tactics are di�erent but we think that the followingexamples give the taste of the relative e�ciency of these approaches. But this is in the context of aredution system where we keep proof objects. In this section, A endows a structure of abelian rings.Test are performed on a PC pentium pro 150.� This is checked in 3s cpu using the LCF-like tactic.Goal (n,m,p,q:A)[| n*(m*(p*q)) + m*p = p*m + q*(m*(n*p)) |].Ring_dec.Save Test4.� the following decision is performed in 14s cpu.Goal (n,m,p,q:A)[|m*q*p + m*n*m*p + p*q*p + p*n*m*p + p*q = p*m*n*m + p*p*q + p*p*n*m + p*q*m + p*q |].Ring_dec.Save Test5.� now 75s cpu.Goal (n,m,p,q,r,s:A) [| (n + m + -p)*(q + (-r) + p) =(p + q + -r)*(m + (-p) + n) |].Ring_dec.Save Test9.4in reduction systems 8
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� The following example cannot be solved in the \fully expansive" or LCF approach. The decisionprocedure on rings de�ned by re
ection performs the computation in 20s cpu on a pentiumpro150 in constant space.Goal (n,m,p,q,r,s:A)[|(n + m + -p)*(q + (-r) + p)*(n + (-m) + -p)= ((-p) + n + -m)*(p + q + -r)*(m + (-p) + n) |].� The following example is used to prove that the product of sums of eight squares is a sum ofeight squares. To perform the computation corresponding to this goal, Coq needs 5 minutes inconstant memory space.Goal (p1,q1,r1,s1,t1,u1,v1,w1,p2,q2,r2,s2,t2,u2,v2,w2:A)[| (p1*p1 + q1*q1 + r1*r1 + s1*s1 + t1*t1 + u1*u1 + v1*v1 + w1*w1)*(p2*p2 + q2*q2 + r2*r2 + s2*s2 + t2*t2 + u2*u2 + v2*v2 + w2*w2)= (p1*p2 + (-q1*q2) + (-r1*r2) + (-s1*s2) + (-t1*t2) + (-u1*u2) + (-v1*v2) + (-w1*w2))*(p1*p2 + (-q1*q2) + (-r1*r2) + (-s1*s2) + (-t1*t2) + (-u1*u2) + (-v1*v2) + (-w1*w2))+ (p1*q2 + q1*p2 + r1*s2 + (-s1*r2) + t1*u2 + (-u1*t2) + (-v1*w2) + w1*v2)*(p1*q2 + q1*p2 + r1*s2 + (-s1*r2) + t1*u2 + (-u1*t2) + (-v1*w2) + w1*v2)+ (p1*r2 + (-q1*s2) + r1*p2 + s1*q2 + t1*v2 + u1*w2 + (-v1*t2) + (-w1*u2))*(p1*r2 + (-q1*s2) + r1*p2 + s1*q2 + t1*v2 + u1*w2 + (-v1*t2) + (-w1*u2))+ (p1*s2 + q1*r2 + (-r1*q2) + s1*p2 + t1*w2 + (-u1*v2) + v1*u2 + (-w1*t2))*(p1*s2 + q1*r2 + (-r1*q2) + s1*p2 + t1*w2 + (-u1*v2) + v1*u2 + (-w1*t2))+ (p1*t2 + (-q1*u2) + (-r1*v2) + (-s1*w2) + t1*p2 + u1*q2 + v1*r2 + w1*s2)*(p1*t2 + (-q1*u2) + (-r1*v2) + (-s1*w2) + t1*p2 + u1*q2 + v1*r2 + w1*s2)+ (p1*u2 + q1*t2 + (-r1*w2) + s1*v2 + (-t1*q2) + u1*p2 + (-v1*s2) + w1*r2)*(p1*u2 + q1*t2 + (-r1*w2) + s1*v2 + (-t1*q2) + u1*p2 + (-v1*s2) + w1*r2)+ (p1*v2 + q1*w2 + r1*t2 + (-s1*u2) + (-t1*r2) + u1*s2 + v1*p2 + (-w1*q2))*(p1*v2 + q1*w2 + r1*t2 + (-s1*u2) + (-t1*r2) + u1*s2 + v1*p2 + (-w1*q2))+ (p1*w2 + (-q1*v2) + r1*u2 + s1*t2 + (-t1*s2) + (-u1*r2) + v1*q2 + w1*p2)*(p1*w2 + (-q1*v2) + r1*u2 + s1*t2 + (-t1*s2) + (-u1*r2) + v1*q2 + w1*p2) |].Ring_decision.SaveThe procedure is not yet optimized and for instance we use unary integers to encode the atoms(constructor atom). This sheds some light on the limitations of this approach as the same problem issolved in tenth of a second by the computer algebra system Maple on the same machine. However weshould not forget that the algorithm used by Maple is certainly largely more e�cient than the one wepresent here as we have the constraint that our algorithm has to be proven correct and complete so thatwe cannot make too many tricky transformations! Moreover the algorithm is written in a functionalstyle. Indeed we can consider Maple will always be 5000 speeder than Coq to solve problems of thiskind. But now, if we use total re
ection using the extraction process, the computation is performed inless than 1 second cpu so that we are not so far from Maple performances on this particular example.7 Related approachesAccording to its author Richard Weyrauch, the FOL system [19] was the �rst theorem prover werere
ection was considered as an essential tool for proving theorems. FOL is a proof checker for �rstorder logic so that it was possible for the user to de�ne signatures of �rst order theories and to givemeaning to the constants of the signature by a mechanism of semantic attachment. It was possible forinstance to de�ne Peano arithmetic and to associate the constant zero to the machine integer 0 andthe successor constant to the Lisp function (Lisp was the implementation language of FOL) whichtranslates a machine integer to its successor. However, semantic attatchment allowed to interpret9
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closed terms only. There were also means of rewriting in a goal directed style like in the LCF system.And �nally, an essential means of proving theorems was the use of re
ection principles. The idea wasthat if w is a formula and D a logical derivation of w, then assuming it is possible to handle "w" and"D" in the object language, it is equivalent to prove Prf("w","D") where Prf is also a term of theobject language that computes the process of checking that "D" is a derivation for "w". This was thegreat idea: to change theorem proving in the theory into evaluation in the meta-theory as Weyrauchsays. To perform this program, a particular �rst order theory of the object language called METAwas explaining what it means to be a well formed formula of the object language, what it means to bea well formed term, what it means to be a derivation : : :And then evaluation in the meta-theory wasperformed using semantic attachment to objects of META. An important point is that by the processof re
ection, variables become constants and lemmas can be proved by computation on closed terms.This is also true in the more general context of reduction systems where computation works essentiallyon closed terms (you can compute (mult O n) in Coq even if n is \free", but not (mult n O) as multis de�ned by primitive recursion on its �rst argument)So a lot of essential ideas were discoverd in the FOL experiments but the system itself was su�eringa serions lack of reliability. The relation between the theory and the metatheory was postulated.The fact that given a problem in the theory, you can translate it into a computation in the meta-theory was not proved nor in the system itself neither anywhere else; the equivalence between D andPrf("w","D") was always an axiom. Moreover, the context of self re
ection which arises when youre
ect the theory META itself was called a potentially powerful tool according to Weyrauch but lookslike a semantic hole for the system.With respect to this �rst experiment of computational re
ection in theorem provers, the Boyer-Mooreapproach is sounder. Roughly, rather than re
ecting an object of the object language in the objectlanguage, they de�ne their abstract syntax (through a function explaining what is a well formed term)in the object language and an evaluation function, EVAL, interpreting abstract syntax in the objectlanguage. And then they prove that a certain computation, say f, in the abstract syntax preservesmeaning w.r.t EVAL. Then they can add safely the f function to the set of decision procedures of thesystem. They are able to do all of this because their implementation language and object languageare roughly the same and 
exible language: Lisp. Moreover they claim that their approach is ase�cient as an hand coded extension of the system. However, the Boyer-Moore system is an automatictheorem-prover. This means that when you use this system, you just give a formula to the systemand the system suceeds of fails in �nding a proof. If it fails, you have to imagine the good successionof intermediate lemmas which will allow the system to prove your initial goal. Automatic proversemphasize on the problem of �nding a proof and not on the problem of checking that a given proof iscorrect. In particular, it doesn't yield a proof object and it relies completely on their implementationof the prover. Furthermore, the operator Prf of the FOL context is now de�ned by a quotationmecanism and is not de�ned within the theory of the Boyer-Moore prover.The work about re
ection in Nuprl follow the ideas of Weyrauch but now in a su�cient powerful logicalsystem so that the gap between theory and meta-theory is �lled in the Nuprl system itself. In [14],Constable and Knoblock say \The metatheories are tailored for a particular sort of meta-reasoning:representing enough of the proof theory of the previous language in the hierarchy so that proof tactics,functions that assist in proof development, are representable". This program is possible in the Nuprlsystem because the formal logic under the system endows a hierarchy of universes Ui where i is aninteger, s.t all the developments of Uj and Uj itself belong to Uj+1 so that it is possible to performsome kind of boot-strap of the language of Uj in Uj+1, or partial bootstrap of Uj into itself, withoutany contradiction w.r.t G�odel's incompleteness theorem. We have not tried such an approach in theCoq system because of e�ciency problems. The performances of the Nuprl approach are not discussedto our knowledge and we have no idea about the e�ciency of computation in Nuprl. However, in theCoq system, as this is discussed in the next section, the computation of the system is between 500 and1000 slower than its implementation language so that it seems hopeless to perform computations in a10
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boot-strapped version of the system and we think that the simpli�cations provided by the re
ectionwould not compensate the ine�ciency of the bootstrap.Remark at the end that all these approaches look the same. FOL explained the advantage of usingmeta-reasoning but did not �nd a reliable way to perform this. In the Nuprl project, they investigatehow to go from the theory to the meta-theory in the object language by some kind of boot-strap,and Boyer-Moore uses the same kind of approach. We propose to do this metai�cation in the meta-language preserving reliability and e�ciency.We inherit of Weyrauch approach the idea that re
ection allows to change theorem proving intocomputation, but we do not perform the metai�cation in the object language as this is proposedin other systems, we perform it in the meta-language of the system. So that our approach seemsless ambitious than the approach of FOL or Nuprl but we keep at the same time reliability ande�ciency and furthermore complete re
ection allows to considerably improve e�ciency by only slightlyweakening reliability (this can at least be used as an oracle which allows to delay computations at amoment where the user is not present). During the Bra-Aussois workshop, we saw that Barendregtand his co-workers were working on the same kind of project than ours, which they call the two-levelapproach. Concerning the topic of de�ning very e�cient decision procedures in the context of theoremprovers, Harrisson and Thery [9] propose to link HOL [7] and Maple to perform e�cient computationsbut this also links the reliability of both systems! We believe that complete re
ection is sounder thansuch union between a computer algebra system and a proof checker.ConclusionIn this paper we have presented computational re
ection and total re
ection in reduction systems.We have experimented this methodology with the example of abelian rings in the Coq system. Theidea is that we can solve, using de�nitional identity, problems posed on propositional identity byapplying a meta theorem. At the same time, we translate explicit proof steps into implicit proof steps.In the example of abelian rings, these proof steps are always rewrite, but the methodology can beapplied to many kinds of derivations. Simple re
ection in Coq allows to de�ne reasonably e�cientcerti�ed decision procedures and this applies clearly to all reduction systems. Total re
ection o�ersthe possibility to gain another 500-1000 factor with a slight loss of reliability obtaining good results,even with respect to computer algebra systems: reliability costs less than an order of magnitude withrespect to computer algebra systems for the examples we have tested. However total re
ection is notyet implemented in the Coq proof development system and this is our main aim for future works. Weare also interested in using the re
ection mecanism to build e�cient decision procedures for tautologiesand even to implement decision by refutation for parts of �rst order logic following works of Hsiang[12]. For tautologies, an implementation of Stalmark's algorithm seems the best choice [10].References[1] http://pauillac.inria.fr/coq/coq-eng.html[2] B. Barras et al. The Coq Proof Assistant User's Guide, V6.1, Inria technical report, to appear,1997.[3] R.S. Boyer and JS. Moore, Metafunctions: proving them correct and using them e�ciently asnew proof procedures. Dans \Then Correctness Problem in Computer Science", R.S Boyer et JS.Moore, pp 103-184, Academic Press, 1981.[4] R.L Constable et al Implementing Mathematics with the Nuprl Proof Development System Prentice-hall 1986. 11
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[5] T.Coquand, G.Huet The Calculus of Constructions, Information and Computation, 76, 1988.[6] The Coq Proof Assistant Reference Manual, C. Cornes et al, Inria Research Report 177, 1995.[7] M.J.C. Gordon and T.Melham, Introduction to HOL, Cambridge University Press, 1993.[8] J. Harisson, Metatheory and Re
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